

Generative Art

https://editor.p5js.org/

http://www.galaxykate.com/apps/Prototypes/LTrees/

http://math.hws.edu/eck/js/edge-of-chaos/CA.html

http://www.galaxykate.com/apps/Prototypes/LTrees/
http://www.galaxykate.com/apps/Prototypes/LTrees/
http://math.hws.edu/eck/js/edge-of-chaos/CA.html
http://math.hws.edu/eck/js/edge-of-chaos/CA.html

What goes into a piece of generative art?
•Randomness is crucial for creating generative art. The art should be different

each time you run the generation script, so randomness is usually a large part

of that.

•Algorithms — Implementing an algorithm visually can often generate

awesome art, for example, the binary tree above.

•Geometry — Most generative art incorporates shapes, and the math from high

school geometry class can aid in some really cool effects.

 Code is a precise way of explaining
something and it is written in a

programming language.

function draw() {
 background('PEACHPUFF');
 ellipse(50,50,100);
 ellipse(200,200,50);
}

PEACHPUFF is from CSS colours. You can check out some of these colours:

http://colours.neilorangepeel.com/

This means the line goes from (0,0) to (400, 400) ->
the top left corner to the bottom right.

Remember to click play to update your sketch

This command will result in a random value between 0 and 1. That means around half
the time the value will be bigger than 0.5 and around half the time the value will be less
than 0.5.

So what we could do is use the random() command and draw a left line if the value is
bigger than 0.5, otherwise, we draw the right-to-left line.

random()

Make sure to add noLoop(); - that makes sure the line is not flashing.

for (var count=0; count<400; count = count + 100) {
 doAnAction;
}

For Loops

We can use the for loop in our drawing!
This draws multiple lines… but not quite random.

The gap between the lines

Sets the lines’ thickness Starts are same horizontal position, and moves up
Ends at bottom and also moves up

What does this draw?

For loops inside for loops!

Here’s what it looks like, in actuality…

We go from (0,0) to
(400,400)!

What do you think this
outputs?

Ha! It’s all black, because the changes are
just x=x+1 and y=y+1.

Too small of a change so we just fill it all.

Notice how step is > 20, which
is the jump we have in the lines.
This makes the gap effect!

We change the strokeWeight to be heavier as we near (400,400)

The lines also have some that jump = step and
some < step (more precisely, step/2)

https://gist.github.com/ClaireBookworm/5df4783f15f018d6f83c5aac32c6b0a0

https://gist.github.com/ClaireBookworm/5df4783f15f018d6f83c5aac32c6b0a0
https://gist.github.com/ClaireBookworm/5df4783f15f018d6f83c5aac32c6b0a0

https://gist.github.com/ClaireBookworm/ebf3379ab6fb6840d5e6dfd70b05d62b

https://gist.github.com/ClaireBookworm/ebf3379ab6fb6840d5e6dfd70b05d62b
https://gist.github.com/ClaireBookworm/ebf3379ab6fb6840d5e6dfd70b05d62b

https://codepen.io/Shvembldr/pen/zbqpBp
https://codepen.io/Shvembldr/pen/pYypqd

https://codepen.io/Shvembldr/pen/zbqpBp
https://codepen.io/Shvembldr/pen/zbqpBp
https://codepen.io/Shvembldr/pen/pYypqd
https://codepen.io/Shvembldr/pen/pYypqd

openprocessing.org

https://www.openprocessing.org/
https://www.openprocessing.org/

Creative coding — find and share!

https://gist.github.com/ClaireBookworm/04b139695749f53ad896df0c67668f3c

https://gist.github.com/ClaireBookworm/04b139695749f53ad896df0c67668f3c
https://gist.github.com/ClaireBookworm/04b139695749f53ad896df0c67668f3c

Now let’s make a grid of dots.

For every dot coordinate we will draw it on the
canvas, but also store the coordinate in an array for
future use.

Every coordinate will be represented by an object
with 2 properties: x and y.

The space between lines and columns is defined by
the variable gap, we’ll draw these circles so we can
see how our grid is placed out on the canvas.

Now, we’re going to displace every other line on the x axis. We do this by
alternating the variable called odd between true and false. We can see
that the new pattern is shaping up to be a mesh of regular triangles.

The next step will be using the dots to draw the triangles. To make our
life easier let’s make a function that take the 3 coordinates of a triangle
and draw them together.

This is called a helper function.

Now that we have a regular triangle mesh, we are one detail away from
getting the magic to happen. Every dot is a gap away from the
surrounding dots. So a dot can be moved in this area without
overlapping with other dots.

Let’s use a bit of Math.random() to get a random position in this area.

What you multiply random() by is the number of shades.

45 is a lot, 4 is too little — experiment!

I ended up using 16.

